伊人成人网国家,国产美熟女乱又伦AV果冻传媒,无码熟妇骚妇的一区二区,www.gzysgj.cn

Skip to content Skip to navigation

Ball splines were once a staple for many machine designers seeking an elegant way to integrate rotary and linear motion. Driven by pressures to speed their machines to market, many designers found it faster to implement pre-packaged solutions in which shafts for both rotary and linear motion had already been integrated.

Now, as emerging opportunities for automation bring more axes of motion to machinery, more designers are finding that packaged solutions may not have enough flexibility to meet application requirements. This shift has caused many designers to reconsider ball splines, mostly because of their unique ability to integrate rotary and linear motion on a single shaft. This capability provides advantages for motion performance and stability, giving designers more ways to compress an assembly, extend a stroke or distribute a load, as well as new flexibility to meet modern automation demands.

How ball splines work

Like ball screws, ball splines provide nearly friction-free motion by restricting physical contact to tangential points of rolling balls, which are guided by ball screw threads and the raceways within a nut. Ball splines then augment this rotary guidance by adding one or more linear grooves?-aka splines?-along the shaft, which facilitate front-to-back movements. (Figure 1) These grooves provide a low-friction linear path while simultaneously enabling transmission torsional loads.

Figure 1. Ball splines have one or more grooves that guide balls to enable nearly friction-free linear or rotary motion. (Image courtesy of Thomson Industries, Inc.)

The result is a highly efficient coupling device suitable for various applications involving axial load transfer or torque transmission. Ball splines resist the radial displacements caused by torque loads and need small forces to achieve axial displacement of the spline member while transmitting torque. This makes them capable of high-speed operation under high torsional loads.

Recapturing space

Integrating linear and rotary motion without using a ball spline typically requires mounting separate shafts in a dual-stacked, four-bearing architecture built around Cartesian coordinates. This setup takes time to build and test, consumes a lot of space, and can require higher maintenance interaction. Ball splines enable a single-shaft solution that provides greater design flexibility and requires much less space.

Stability

In addition to reducing the number of shafts needed, the spline structure itself adds stability. The solidness of a ball spline provides a cost-effective way to extend a vertical stroke beyond the scope of what a robot might provide. It also enables cantilevered architectures and can add anti-rotational guidance.

Enhancing performance

To those compressed, stable assemblies, ball splines bring the characteristic performance advantages of other ball screw components. The reduced friction enables higher-speed operations, less wear, longer, more predictable life expectancy, less backlash and seizure, and no stick-slip.

Twists and turns

Ball splines are especially appropriate for automation applications that, traditionally, humans might perform with the twist of a wrist, such as moving a test tube or opening the lid of a sample jar for a laboratory scale. High-speed pick-and-place applications are another example of ball spline use.

Figure 2. Ball splines can be used in applications that twist and move back and forth, such as pick-and-place machines. (Image courtesy of Thomson Industries, Inc.)

Robots can certainly perform many of the same tasks as ball splines and with greater freedom of movement, but if that freedom is not critical to the application, ball splines can offer numerous other benefits and eliminate the high expense of a robot. Ball splines can provide comparable precision in a smaller footprint and move higher loads faster, with more robust mechanics and often at a lower cost of development.

Specification and customization

Initially, integrating rotary and linear motion was the result of collaboration between mechanical and electrical engineers to build a solution using two or more shafts. Today, there are a wide range of off-the-shelf ball spline options with lengths up to 3000 mm and diameters ranging from 6 to 50 mm.

Figure 3. High-precision ball splines are available in a wide range of sizes, nut types and finished ends. Online resources such as the Thomson Ball Spline Selector Tool can help users quickly narrow their options to choose the optimal component for their application. (Image courtesy of Thomson Industries, Inc.)

Ball splines are also quite amenable to customization. Depending on the specification, manufacturers can often tap holes, add reductions for radial bearings or coaxial holes, or make other modifications that may be needed to integrate the ball spline unit into the machine.

Back to the future

When designing a solution, the ability to extend a stroke or compress a system may be the key factor to success. Ball splines provide this game-changing flexibility that designers may not find in a pre-packaged, multi-shaft assembly. More actions that may have previously required a technician or assembler can now be automated, making those movements safer and more efficient, with better control. These types of automated solutions are especially relevant amidst today’s rising labor costs, labor shortages and high absenteeism.

Machine designers should consider ball splines for any application requiring both rotary and linear motion, especially if space is at a premium and if stroke, load, high speed, reliability, or durability are critical.

For those already familiar with ball splines, it may be time to revisit their use in your design. The advances in digital technology make them easier to incorporate into integrated axes of modern systems. For those engineers not familiar with ball splines, it’s a good idea to review your design projects and see if integrating rotary and linear motion on a single shaft could provide space savings, improved cycle time, or better machine reliability.

back to top 毛片官网喷水| 在线侵犯一区二区三区| 亚洲AⅤ三级区| 成人性爱视频在线观看| 一本色道久久爱88av| 亚在线观看免费视频入口| 亚洲区小说区激情区图片区| 亚洲综合激情小说| 精品无码黑人又粗又大又长| 99热最新精品| 国产亚洲色婷婷久久99精品9j| 欧美视频,一区,二区,三区| 欧美性爱视频一级| 香港台湾经典三级a视频| 女人考逼久久久久久久| 国产美女内谢| 免费在线观看av网址| 日本a级特黄特黄刺激大片| 亚洲综合久久AV一区二区三区| 狠狠插入少妇| 色网站在线看| 亚洲性色图片| 国内免费高清在线观看| 国产au精品au天堂au | 精品人妻少妇一区二区| 无码人妻精品一区二区二| 日韩激情无码精品免费视频| 玖玖99在线| 日韩一区无码| 欧美性生交大片免费看app麻豆| 天堂资源最新在线| av天堂资源在线观看| 亚洲精品宾馆在线精品酒店| 强行交换配乱婬BD动漫| 色偷偷色男人社区2017| 国产精品剧情演绎美女在线| 麻豆AV毛片在线观看| 波多野结衣30分钟| 最新av资源网| 国产真实乱伦一区二区| 欧美乱伦一区二区三区四区免费福利 |